
A New Methodology for Robust Optimizations of Inverse Problems 

under Interval Uncertainty 
 

Shiyou Yang
1,2

, Jiaqiang Yang
1
, Yanan Bai

1
, Guangzheng Ni

1
, Jianhua Wu

1
 

 
1
College of Electrical Engineering, Zhejiang University, Hangzhou, 310027, China, 

2
eesyyang@zju.edu.cn 

 

To consider the interval uncertainty in a practical inverse problem, a new methodology for efficient robust optimizations is proposed. 

The proposed methodology uses a constrained formulation for robust performances not only in alleviating the inefficiency of existing 

approaches in modeling interval uncertainties but also in avoiding the deficiency in the biasing force selection. The gradient 

information is used as both a trigger to activate the uncertain quantification procedure and the steepest increment direction to develop 

a fast searching phase. The stochastic approximation method is employed to minimize the computational burdens in computing the 

gradients. The numerical results on a case study are reported to validate the proposed methodology.   
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I. INTRODUCTION 

RADITIONALLY, in the performance-based design 

optimizations of inverse problems, the goal is to find the 

global optimal solution according to the performance 

(objective) quality. However, imprecision and uncertainty are 

often inevitable and unavoidable in an engineering design 

problem. Hence, if the optimized solution is very sensitive to 

small variations of the optimized decision parameters, it is 

possible that slight perturbations in the optimized variables 

could result in either significant performance degradation or 

an infeasible solution due to the violation of the design 

constraint functions. The preferred practical design is thus not 

the global optimal solution in terms of only the performance 

(objective) function, but the one/ones that has/have high 

performances in both objective function and robustness in 

their design parameters against uncertainties. In this regard, it 

is equally important to explore robust optimal techniques in 

the studies of inverse problems under conditions of 

uncertainties in electromagnetic [1],[2]. 

Robustness means some degree of insensitivity to small 

perturbations in either the design or environmental variables. 

To quantify the uncertainty in robust design optimizations, 

numerous efforts have been reported [3]. Generally, there are 

two categories of uncertainty quantization, the probability-

based and interval-based approaches [4]. The probability-

based approach uses probabilistic information of the 

uncertainty, commonly the mean (expected fitness) and the 

standard deviation as the gauge to assess the robustness of a 

solution. However, the distribution probability of the 

uncertainties is unknown in the early stage of the design 

procedure. Also, the robustness of the final solution obtained 

using this approach cannot be guaranteed completely owing to 

the intrinsic properties of certain probability distributions [4]. 

The interval-based method simply uses the nominal value and 

the bounds of the uncertain parameters. Moreover, the interval 

uncertainty is very common in an engineering problem. In this 

regard, the interval-based approach is a more practical and 

convenient method in uncertainty quantization for practical 

inverse problems. Nevertheless, only lukewarm efforts are 

given to the development of robust design methodologies in 

computational electromagnetic. In this regard, a new 

methodology based on interval-based approach for uncertainty 

quantization is proposed and tested on a case study with 

promising results. 

II. A NEW METHODOLOGY FOR ROBUST OPTIMIZATIONS 

 A constrained minimization problem with interval 

uncertainty can be formulated as 
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where, x is the vector of design (decision) parameters 

(variables),   is the vector of uncertainty variables, N is the 

nominal value of , 0  is the half range of the interval 

uncertainty. 

The robust counterparts of the objective function f(x,) and 

the constraint function ( , )ig x   for the interval uncertainty 

using the worst case scenario are, respectively, defined as 
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In existing robust optimization methodologies [1],[2], the 

robust performances, such as those as defined in (2) and (3), 

are generally used in lieu of the original performance function 

to ensure the performance robustness of a final optimal 

solution. However, such formulations will result in a 

deficiency in the biasing force selection; and as a result, a 

different robust methodology is proposed and used in this 

paper.  

A. Formulation of the Robust Optimization 

To eliminate the shortcomings of both existing robust 

optimal methodologies and probability-based uncertainty 

quantization approaches, the robust performances are imposed 

as constraints in this paper. Moreover, to incorporate a priori 

knowledge of a domain expert, some acceptable tolerance for 

T 



performance degradations is introduced. As a result, the 

proposed robust optimization formulation is formulated as 
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together with 
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where, ( )i toleranceg  is the acceptable tolerance of constraint 

function ( , )ig x  , ( )tolerancef  is the acceptable tolerance of 

the objective function f(x,). 

B.  A Robust Oriented Tabu Search Algorithm 

It should be pointed out that it is readily to use any 

evolutionary algorithm to find the robust optimal solution of 

(4) and (5). Nevertheless, the robust-oriented tabu search 

method [5], together with some specially designed mechanism 

for efficient robust optimizations, is used. 

As explained in [5], the robust optimal solution of a 

constrained optimal design is either one of the local/global 

optima of the objective function or that distributed on the 

boundaries of the feasible parameter space. In this point of 

view, it is unnecessary to check (5) for every neighborhood 

solution. However, it is not easy to identify if a neighborhood 

solution is an optimal one during the optimization process. To 

address this problem, the (partial) derivative information is 

used as both a trigger to activate the validating procedures of 

(5) and the steepest increment direction to develop a fast 

searching phase for finding ( ) ( )i wg x  and ( )wf x . 

In the proposed mechanism, once the best solution, x*, in 

the current neighborhood solutions, is identified, the (partial) 

derivative ( ( *)f x ) computation procedure will be activated 

for x*, and a fast searching phase for finding ( ) ( )i wg x  and 

( )wf x will then be implemented iff 2|| ( *) ||f x  is smaller than 

a predefined value. To overcome the disadvantage of 

computing only one partial derivative in one computation of 

the conventional finite-difference approach, the stochastic 

approximation method as introduced in [6] is used. 

In the stochastic approximation method, a n-dimensional 

random vector (n is the dimension of the decision parameters), 
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n
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symmetrically distributed entries with finite inverse moment 

expectation, is firstly generated using the symmetric Bernoulli 

(±1) distributions; and the gradient information for all n-

dimensions is approximated at one computation using 

1 1 1

1 2

( )
( ) |

( ) ( )
[ ]

2



  


 


    

   

kk x x

Trobust k robust k
n

f x
f x

x
f x c f x c

c

   (6) 

Moreover, the proposed fast searching phase uses the 

gradient as the steepest increment direction for finding 

( ) ( )i wg x  and ( )wf x . Similarly, the gradients are computed 

use the same methodology of (6). 

III. NUMERICAL APPLICATIONS 

To validate the proposed robust optimal methodology, it is 

used to solve different case studies and compared with other 

existing robust optimization approaches. Due to space 

limitations, only the numerical results on the robust optimal 

counterpart of the Team Workshop problem 22 of the 

superconducting magnetic energy storage (SMES) 

configuration with three free parameters [7] are reported. 

 In the numerical study, the interval uncertainty is set to ± 1% 

limit on the decision variables, and the acceptable tolerances 

for the stay field and the stored energy are set, respectively, as 

35% and 0.15%. For performance comparisons, this case study 

is solved, respectively, by the proposed, the Combined 

Polynomial Chaos and PSO approach (CPC_PSO) for robust 

optimizations [8], and a general purpose tabu search algorithm. 

The numerical results will be reported in details in the full 

paper, and some observations are summarized as: 

 (1) The final solutions searched by the proposed 

methodology and the CPC_PSO are nearly the same. However, 

the computational time used by the former is only about 75% 

of that of the latter; 

(2) The computational time used by the proposed 

methodology is about 1.2 times of that of the general purpose 

tabu search method although some time consuming procedures 

for robust performance qualifications are integrated in the 

proposed optimizer as an inner loop; 

(3) For a ± 1% limit of interval uncertainty on the optimized 

decision variables, the performance degradations of the global 

optimal solution obtained using the general purpose tabu 

search algorithm are 82% for the stay field and 2% for the 

stored energy; which are compared to 34.5% for the stay field 

and 0.14% for the stored energy of the robust optimal solution 

obtained using the proposed methodology. 
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